CORRECTION EXERCICES SUR CORRECTION ACOUSTIQUE

Exercice 1:

1.)
$$P_{A1} = \frac{\sum \alpha_i S_i}{S_{tot}}$$

Eléments	$lpha_{ m i}$	S _i (en m ²)	$\alpha_i S_i$ (en m ²)	
SOL	0,10	24	2,40	
MURS	0,02	52	1,04	
FENETRES	0,03	6	0,18	
PORTE	0,03	2	0,06	
PLAFOND	0,02	24	0,48	

$$S_{\text{tot}} = 108 \text{ m}^2$$
 = 4,16 m²
+ 10% 0,416 m²

$$\Sigma \alpha_i S_i = 4.58 \text{ m}^2$$

donc
$$P_{A1} = \frac{\sum \alpha_i S_i}{S_{cot}} = \frac{4,58}{108}$$
 \Rightarrow $P_{A1} = 0,042 = 4,2 \%$

$$3.) \qquad P_{A2} = \frac{\sum \alpha_i \ S_i + \alpha_m \ S_{pl}}{S_{tot}} \qquad \qquad \Rightarrow \qquad \alpha_m \ = \ \frac{P_{A2} \ . \ S_{tot} - \sum \alpha_i \ S_i}{S_{pl}} \qquad \Rightarrow \qquad \alpha_m \ = \ \textbf{0.41}$$

Exercice 2:

1.)
$$\operatorname{Tr} = \frac{a}{10} \sqrt[3]{V} = \frac{1,1}{10} \cdot \sqrt[3]{1200} \implies \operatorname{Tr} = 1, 17 \text{ s}$$

2.)
$$Tr = 0.164 \frac{V}{A} (1 + \log \frac{N}{40})$$

$$\underline{Pour\ la\ parole}: \qquad \qquad N = 40\ dB \ \ et \ \ Tr = 1,17\ s \quad \Rightarrow \qquad Tr = 0,164\ \ \frac{V}{A}(1 + log\frac{40}{40})$$

$$\Rightarrow \qquad Tr = 0.164 \ \frac{V}{A} \qquad \qquad \Rightarrow \qquad A_P \ = \ \frac{0.164 \ . \ 1200}{Tr} \quad \Rightarrow \qquad A_P \ = \ \frac{197}{Tr} \ = \ 168 \ m^2$$

Pour la musique:
$$N = 80 \text{ dB}$$
 et $Tr = 1,17 \text{ s} \Rightarrow Tr = 0,164 \frac{V}{A} (1 + \log \frac{80}{40})$

$$\Rightarrow \qquad Tr = 0.164 \ \frac{V}{A} \ (1 + log \ 2) \qquad \Rightarrow \qquad A_M \ = \ \frac{197 \ . \ 1.3}{Tr} \qquad \Rightarrow \qquad A_M \ = \ \frac{256}{Tr} \ = \ 219 \ m^2$$

Valeur moyenne de la surface absorbante nécessaire : $A_{moy} = \frac{A_P + A_M}{2} = 194 \text{ m}^2$

3.) Le projet de l'architecte donne la surface absorbante : on calcule Σ α_i $S_i = ?$ Voir résultats dans le tableau ci-dessous :

On trouve :
$$A = \sum \alpha_i S_i = 77 \text{ m}^2$$

La surface absorbante manquante vaut alors :
$$Am = A_{mov} - A = 194 - 77 = 117 \text{ m}^2$$

Surface	Matériau	α _i à 512 Hz	Aire S _i en m ²	$\Sigma \alpha_i S_i$
Sol	Linoléum	0,1	200	20,0
Plafonds	Fibres molles	0,15	250	37,5
Murs	Ribage fin	0,02	240	4,80
Portes	Bois dur	0,03	30	0,90
Fenêtres	Verre	0,03	40	1,20
Avant-scène	Bois	0,03	10	0,30
Podium	Bois sapin	0,06	50	3,00
Mobilier	Chaises	0,008	N = 300	2,40
				70,1
			10 %	7,01

 $\Sigma \alpha_i S_i = 77 m^2$

4.) <u>Temps de réverbération en fonction du nombre d'auditeurs :</u>

<u>Pour la parole</u>: $Tr_P = \frac{197}{A}$ (d'après la question 2.)

<u>Pour la musique</u>: $Tr_M = \frac{256}{A}$ (d'après la question 2.)

N	0	50	100	150	200	250	300
A _{aud}	0	22	44	66	88	110	132
A_{tot}	77	99	121	143	165	187	209
Tr _P en s	2,55	1,99	1,63	1,38	1,19	1,05	0,94
Tr _M en s	3,32	2,58	2,12	1,79	1,55	1,37	1,22

5.) Salle à moitié pleine : $A = 143 \text{ m}^2$ Il manque alors : $A'm = 194 - 143 = 51 \text{ m}^2$

On trouve cette surface absorbante en collant un revêtelment au plafond : A'm = $\alpha_i \; S_{pl}$

 \Rightarrow $\alpha_i = \frac{51}{250} = 0.2$ c'est la valeur α_{i3} de l'énoncé

6.) <u>Tableau du temps de réverbération en fonction du nombre d'auditeurs APRES CORRECTION :</u>

N	0	50	100	150	200	250	300
A_{aud}	0	22	44	66	88	110	132
A_{tot}	77+51 = 128	150	172	194	216	238	260
Tr _P en s	1,54	1,31	1,14	1,01	0,91	0,83	0,76
Tr _M en s	2,00	1,70	1,49	1,32	1,19	1,08	0,98

Du tableau de la question 4.) et du tableau de la question 6.) on peut tirer les informations suivantes :

• Pour la parole : 1.0 s < Tr < 1.1 s

Le nombre idéal d'auditeurs est : avant correction : 240 - 260 après correction : 120 - 150

• Pour la musique : 1,2 s < Tr < 1,3 s

Le nombre idéal d'auditeurs est : avant correction : 275 - 300 après correction : 160 - 200