CORRECTION EXERCICES SUR OXYDO-REDUCTION / PILES

EXERCICE 1:

Couples en présence :

Fe²⁺/Fe
$$E_{1}^{o} = -0.44 \text{ V}$$

Ag⁺/Ag $E_{2}^{o} = +0.80 \text{ V}$

1.) D'après les valeurs des potentiels : $E_1^0 < E_2^0 \implies$

 $OX FORT : Ag^+$ RED FORT: Fe

Fe réagit donc avec la solution d'ions Ag⁺

Equation de réaction :

$$Fe \longrightarrow Fe^{2+} + 2e^{-}$$

 $Ag^+ + e^- \rightarrow Fe + 2 Ag^+ \rightarrow G$

| x 2

Bilan total:

$$Fe + 2 Ag^+ \longrightarrow$$

+ 2 Ag

2.) On realise une pile par l'association de 2 demi-piles :

Une demi-pile est obtenue en trempant <u>le métal</u> dans <u>sa</u> solution et on relie les 2 demi-piles par un <u>pont</u> <u>électrochimique</u>

$$\overline{2.1. \text{ Fém de la pile}}$$
: $E = E^{\circ} (\text{grand}) - E^{\circ} (\text{petit})$

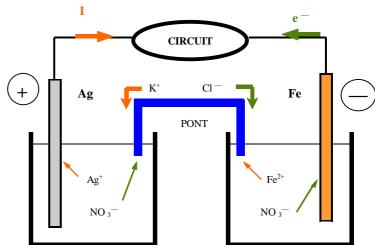
$$E = E^{\circ}_{1} - E^{\circ}_{2} = +0.80 - (-0.44) \Rightarrow E = +1.24 \text{ V}$$

2.2. Schéma de la pile :

E° le plus grand : borne + E° le plus petit : borne –

Le courant circule du + vers le - dans le circuit extérieur au générateur (pile)

Les cations circulent comme I


Les anions circulent comme les e

Electrode en Fe:

Fe
$$\longrightarrow$$
 Fe²⁺ + 2 e⁻

Electrode en Ag:

$$Ag^+ + e^- \longrightarrow Ag$$

Le bilan aux électrodes donne les mêmes équations que dans le cas du contact direct, mais dans le cas d'une pile l'échange d'électrons se fait par le milieu extérieur : ce qui donne un courant électrique

[Fe²⁺] augmente puisque les ions Fe²⁺ sont fabriqués On constate que:

[Ag⁺] diminue puisque les ions Ag⁺ sont consommés

EXERCICE 2:

Couples en présence :

$$Cu^{2+}/Cu$$
 $E_{1}^{o} = +0.34 \text{ V}$

$$Ag^{+}/Ag$$
 $E^{o}_{2} = +0.80 \text{ V}$

1.) D'après les valeurs des potentiels : $E_1^o < E_2^o \implies OX FORT : Ag^+$

RED FORT: Cu

Cu réagit donc avec la solution d'ions Ag⁺

 Cu^{2+} Equation de réaction : Cu

 $Cu + 2 Ag^+ \longrightarrow Cu^{2+} + 2 Ag$ Bilan total:

• Equation de réaction

$$Cu + 2 Ag^+ \longrightarrow Cu^{2+} + 2 Ag$$

 $Cu + 2 Ag^{+} \longrightarrow Cu^{2+} + 2 Ag$ • *Donnée*: solution de nitrate d'argent : $(Ag^{+} + NO_{3}^{-})$

$$n = c \cdot V$$
 avec $c = \frac{20}{M} = \frac{20}{170} = 0.118 \text{ mol.L}^{-1}$

$$n = 0.118 \cdot 10 \cdot 10^{-3} \implies n = 1.18 \cdot .10^{-3} \text{ mol}$$

Tableau d'avancement de la réaction :

EQUATION		Cu	$2 Ag^{+}$	Cu ²⁺	2 Ag
CHIMIQUE					
ETAT du	Avancement				
SYSTEME	(en mol)	(en mol)	(en mol)	(en mol)	(en mol)
t = 0	0	Excès	$n = 1,18.10^{-3}$	0	0
t quelconque	X		n – 2 x	+ x	+ 2 x
t final	x_L		$0 = n - 2 x_{L}$	x_L	$2 x_{L}$

• Réactif limitant x_L: ce sont les ions Ag+ puisque le cuivre est en excès:

$$0 = n - 2 x_L \qquad \Rightarrow \qquad n = 2 x_L \qquad \Rightarrow \qquad x_L = \frac{n}{2} = 5.9 \cdot 10^{-4} \text{ mol}$$

Nous pouvons maintenant répondre à la question posée: $n_{Ag} = 2 x_L = \frac{m}{M}$

Donc
$$m = 2 x_L \cdot M = 2 \cdot 5.9 \cdot 10^{-4} \cdot 108 \implies m = 0.127 g$$

EXERCICE 3:

Pb²⁺/Pb Couples en présence : $E_{1}^{o} = -0.12 \text{ V}$

$$Ag^{+}/Ag$$
 $E^{o}_{2} = +0.80 \text{ V}$

 $Ag^+ + e^- \longrightarrow$ 1.) Equations de définition des couples :

$$Pb^{2+} + 2e^{-} \longrightarrow Pb$$

2.) On réalise une pile par l'association de 2 demi-piles :

Une demi-pile est obtenue en trempant <u>le métal</u> dans <u>sa</u> solution et on relie les 2 demi-piles par un <u>pont</u>

<u>électrochimique</u>

Schéma de la pile :

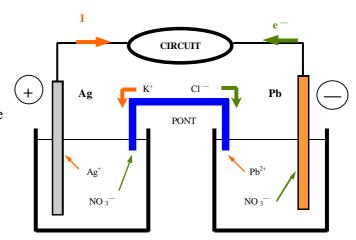
E° le plus grand : borne +

E° le plus petit : borne –

Le courant circule du + vers le - dans le circuit extérieur au générateur (pile)

Les cations circulent comme I

Les anions circulent comme les e


Fém de la pile :

$$E = E^{\circ} (grand) - E^{\circ} (petit)$$

$$E = E^{\circ}_{2} - E^{\circ}_{1} = +0.80 - (-0.12)$$

$$\Rightarrow$$
 E = +0,92 V

3.) D'après les valeurs des potentiels : $E_1^0 < E_2^0$ $OX FORT : Ag^+$ RED FORT: Pb

Equation de réaction aux électrodes :

Bilan total:

$$Pb + 2 Ag^+ \longrightarrow Pb^{2+} + 2 Ag$$

EXERCICE 4:

Si le pôle négatif de cette pile est le zinc : c'est que le zinc correspond à la valeur du potentiel le plus bas : donc Zn est le réducteur fort

On peut donc écrire la demi-équation correspondante :

$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$
1 mole
 n_{Zn} 2 moles
 n

on en déduit que :

$$n.1 = 2 n_{Zn} \Rightarrow n_{Zn} = \frac{n}{2} = 0.5 . 10^{-2} \text{ mol}$$

2.) Quantité d'électricité pour 1 mole : 1 Faraday = 1 F = 96500 C

Donc
$$Q_{exp} = n F = 1.10^{-2}.96500$$
 \Rightarrow $Q = 965 C$
On sait que: $Q = I.t$ \Rightarrow $t = \frac{Q}{I} = \frac{965}{1}$ \Rightarrow $t = 965 s \approx 16 min$

EXERCICE 5:

Couples en présence :
$$Cu^{2+}/Cu$$
 $E^{o}_{1} = +0.34 \text{ V}$
 Fe^{2+}/Fe $E^{o}_{2} = -0.44 \text{ V}$
es potentiels : $E^{o}_{1} > E^{o}_{2}$ \Rightarrow OX FORT : Cu^{2+}

D'après les valeurs des potentiels : $E_1^o > E_2^o$

RED FORT: Fe

Fe réagit donc avec la solution d'ions Cu²⁺

Equation de réaction : Cu²⁺ + 2 e⁻

Bilan total:

$$Fe + Cu^{2+} \longrightarrow Fe^{2+} + Cu$$

• Equation de réaction

$$Fe + Cu^{2+} \longrightarrow Fe^{2+} + Cu$$

- *Donnée*: solution de sulfate de cuivre $(Cu^{2+} + SO_4^{2-})$ $n = c \cdot V = 0.5 \cdot 0.150$ \Rightarrow $n = 7.5 \cdot 10^{-2} \text{ mol}$
- Tableau d'avancement de la réaction :

EQUATION CHIMIQUE		Fe	Cu ²⁺	Fe ²⁺	Cu
ETAT du SYSTEME	Avancement (en mol)	(en mol)	(en mol)	(en mol)	(en mol)
t = 0	0	n': Excès	$n = 7.5 \cdot 10^{-2}$	0	0
t quelconque	X	n' - x	n-x	+ x	+ x
t final	x_L	$n'-x_L$	$0 = n - x_L$	x_L	x_{L}

 $\textit{R\'eactif limitant} \ x_L$: ce sont les ions Cu^{2+} puisque l'énoncé dit qu'ils disparaissent totalement. \Rightarrow n = x_L \Rightarrow $x_L = 7.5 \cdot 10^{-2} \text{ mol}$

Nous pouvons maintenant répondre aux questions posées :

1.) masse de cuivre déposé : $n_{Cu} = x_L = \frac{m}{M}$

Donc $m = x_L \cdot M = 7.5 \cdot 10^{-2} \cdot 63.5$ $\Rightarrow m = 4.76 g$

2.) Perte de masse subie par le fer : d'après le tableau c'est x_L

$$x_L = \frac{m'}{M'} \implies m' = x_L \cdot M' = 7,5 \cdot 10^{-2} \cdot 55,8 \implies m = 4,19 g$$

EXERCICE 6: Acide chlorhydrique : $(H_3O^+ + Cl^-)$

L'ion oxonium H₃O⁺ peut aussi s'écrire : H⁺_{aq}

 H^{+}_{aq}/H_{2} $E^{o}_{1} = 0.00 \text{ V}$ référence Zn^{2+}/Zn $E^{o}_{2} = -0.76 \text{ V}$ Les couples en présence sont :

D'après les valeurs des potentiels : $E_1^o > E_2^o$ OX FORT: H^{+}_{aq} RED FORT: Zn

Zn réagit donc avec la solution acide contenant les ions H⁺aq

Equation de réaction :

 $Zn + 2 H_{aq}^{+} \longrightarrow Zn^{2+} + H_{2}$ Bilan total:

• Equation de réaction

 $Zn^{^{2+}} \quad + \quad H_2$ $\bullet \quad Zn + 2 H^{+}_{aq} \longrightarrow$

• $Zn + 2 H_{aq} \longrightarrow Zn + 11_2$ • $Donn\acute{e}$: masse de zinc: $n = \frac{m}{M} = \frac{2}{64.5} \implies n = 3,1 \cdot 10^{-2} \text{ mol}$

Tableau d'avancement de la réaction :

EQUATION		Zn	$2~\mathrm{H^{+}_{aq}}$	$\mathbf{Z}\mathbf{n}^{2+}$	\mathbf{H}_2
CHIMIQUE			-		
ETAT du	Avancement				
SYSTEME	(en mol)	(en mol)	(en mol)	(en mol)	(en mol)
t = 0	0	$n = 3.1 \cdot 10^{-2}$	Excès	0	0
t quelconque	X	N-x		+ x	+ x
t final	x_L	$0 = n - x_L$		x_L	x_{L}

Réactif limitant x_L: c'est le zinc puisque l'acide est en excès:

$$n-x_L = 0$$
 \Rightarrow $n = x_L$ \Rightarrow $x_L = 3,1 \cdot 10^{-2} \text{ mol}$

Nous pouvons maintenant répondre aux questions posées :

1.) Volume de dihydrogène libéré : $n_{H2} = x_L = \frac{v}{Vm} \implies v = x_L$. Vm

Donc $v = 3.1 \cdot 10^{-2} \cdot 25$ \Rightarrow v = 0.775 L

2.) Masse de chlorure de zinc formé : (Zn²⁺ + 2 Cl⁻)

$$x_L = \frac{m'}{M'} \implies m' = x_L \cdot M' = 3,1 \cdot 10^{-2} \cdot 135,5 \implies m = 4,20 g$$

EXERCICE 7: Acide FORT: H₃O⁺ ou H⁺_{aq}

 $E_{1}^{o} = 0.00 \text{ V}$ référence $E_{2}^{o} = -0.44 \text{ V}$ Les couples en présence sont : H_{aq}^+/H_2

Fe²⁺/Fe

D'après les valeurs des potentiels : $E_1^o > E_2^o$ OX FORT: H^{+}_{aq}

RED FORT: Fe

Fe réagit donc avec la solution acide contenant les ions H⁺_{aq}

Equation de réaction :

 $Fe \ + \ 2 \ H_{aq}^{\scriptscriptstyle +} \ \longrightarrow \qquad \qquad Fe^{2\scriptscriptstyle +} \quad + \quad H_2$ Bilan total:

• Equation de réaction

 $\bullet \quad \text{Fe} \; + \; 2 \; \text{H}^{+}_{\text{aq}} \; \longrightarrow \;$ $Fe^{2+} + H_2$

masse de fer : $n = \frac{m}{M} = \frac{0.2}{55.8}$ \Rightarrow $n = 3.6 \cdot 10^{-3}$ mol • Donnée:

Tableau d'avancement de la réaction :

EQUATION		Fe	$2~\mathrm{H^{^{+}}_{aq}}$	Fe^{2+}	H_2
CHIMIQUE			-		
ETAT du	Avancement				
SYSTEME	(en mol)	(en mol)	(en mol)	(en mol)	(en mol)
t = 0	0	$n = 3.6 \cdot 10^{-3}$	$N' = 10^{-2}$	0	0
t quelconque	X	N-x	N' – 2 x	+ x	+ x
t final	x_L			x_L	x_L

Réactif limitant x_L : il faur faire les deux calculs et voir quelle la valeur de x la plus petite:

Calcul 1: n-x=0

n'-2x'=0Calcul 2:

 $\Rightarrow \quad \mathbf{n} = \mathbf{x} \qquad \Rightarrow \quad \mathbf{x} = 3,6 \cdot 10^{-3} \text{ mol}$ $\Rightarrow \quad \mathbf{x}' = \frac{\mathbf{n}'}{2} \qquad \Rightarrow \quad \mathbf{x}' = 0,5 \cdot 10^{-2} \text{ mol}$

Conclusion : c'est le fer qui est le réctif limitant : $x_L = 3.6 \cdot 10^{-3} \text{ mol}$

Nous pouvons maintenant répondre aux questions posées :

1.) Il y a donc disparition totale du métal:

2.) Volume de dihydrogène libéré : : $n_{H2} = x_L = \frac{v}{v_m} \implies v = x_L$. Vm

 \Rightarrow v = 86,4 \(.10^{-3}\) L Donc $v = 3.6 \cdot 10^{-3} \cdot 24$

solution de chlorure de cuivre : $(Cu^{2+} + 2 Cl^{-})$ **EXERCICE 8**:

 Cu^{2+}/Cu $E^{o}_{1} = +0.34 \text{ V}$ Sn^{2+}/Sn $E^{o}_{2} = -0.11 \text{ V}$ 1.) Couples en présence :

D'après les valeurs des potentiels : $E_1^0 > E_2^0$ \Rightarrow OX FORT: Cu^{2+}

RED FORT: Sn

Sn réagit donc avec la solution d'ions Cu²⁺

$$\begin{array}{cccc}
Cu^{2+} & + & 2 e^{-} & & Cu \\
Sn & & & Sn^{2+} & + & 2 e^{-}
\end{array}$$

$$\operatorname{Sn} \longrightarrow \operatorname{Sn}^{2+} + 2 \operatorname{e}^{-1}$$

$$Sn + Cu^{2+} \longrightarrow Sn^{2+} + Cu$$

$$Sn^{2+}$$
 + Cu

2.) Tableau d'avancement :

$$\operatorname{Sn} + \operatorname{Cu}^{2+} \longrightarrow$$

$$Sn^{2+}$$
 + Cu

Tableau d'avancement de la réaction :

EQUATION		Sn	Cu ²⁺	Sn ²⁺	Cu
CHIMIQUE					
ETAT du	Avancement				
SYSTEME	(en mol)	(en mol)	(en mol)	(en mol)	(en mol)
t = 0	0	n': Excès	n_i	0	0
t quelconque	X	n' - x	$n_i - x$	+ x	+ x
t final	x_L	$n'-x_L$	$0 = n_i - x_L$	x_L	$x_{ m L}$

Réactif limitant x_L : la solution est totalement décolorée, donc tous les ions Cu^{2+} ont disparu : ce sont donc les ions Cu^{2+} qui sont limitants.

La plaque a perdu une masse
$$m = 55$$
 mg d'étain : $n_{Sn} = x_L = \frac{m}{M} = \frac{55 \cdot 10^{-3}}{118.7} \implies x_L = 4,6$

$$\Rightarrow$$
 $x_L = 4,63 \cdot 10^{-4} \text{ mol}$

Nous pouvons maintenant répondre aux questions posées :

2.) masse de cuivre déposé :

$$n_{Cu} = x_L = \frac{m'}{M'}$$

$$\Rightarrow$$
 m' = x_L · M' = 4,63 · 10⁻⁴ · 63,5 \Rightarrow m' = 2,94 · 10⁻² g

$$m' = 2.94 \cdot 10^{-2} g$$

3.) Concentration de la solution initiale :

d'après le tableau :

$$0 = n_i - x_L \implies$$

Donc la concentration vaut :
$$c_i = \frac{n_i}{V} = x_L/V = 4,63 \cdot 10^{-4}/0,5$$

$$\Rightarrow \qquad \quad c_i \,=\, 9,26 \ . \ 10^{-4} \ \text{mol.L}^{-1}$$