EXERCICES SUR COUPLES REDOX

EXERCICE 1: Une plaque de circuit imprimé est recouverte d'un dépôt de cuivre d'épaisseur e = 0,02 mm. Le circuit imprimé est dessiné sur une plaque carrée de côté a = 10 cm et occupe 50% de la surface totale. Pour éliminer les parties non dessinées, on plonge la plaque dans un bain de volume V = 200 mL d'une solution de trichlorure de fer III.

- 1.) La solution de trichlorure de fer III est obtenue en dissolvant m = 100 g de composé solide dans 1 L d'eau. Calculer la concentration c de la solution ainsi que les concentrations [Fe³⁺] et [Cl⁻]
- 2.) La masse volumique du cuivre est $\rho = 8900 \text{ kg.m}^{-3}$: calculer la masse m_{Cu} de cuivre à oxyder
- 3.) Montrer que la réaction d'oxydation du cuivre par les ions Fe³⁺ est possible. Ecrire les demiéquations électroniques, puis le bilan global.
- 4.) Calculer les concentrations $[Fe^{3+}]$, $[Fe^{2+}]$, $[Cu^{2+}]$ et $[Cl^-]$ dans la solution en fin de réaction .

EXERCICE 2: On dissout m = 10 g de sulfate de fer III $Fe_2(SO_4)_3$ dans V = 100 mL d'eau.

- 1.) Calculer les concentrations [Fe³⁺] et [SO₄²⁻] dans la solution préparée.
- 2.) On introduit de la limaille de fer en excès : montrer que le fer est oxydé et écrire l'équation de la
- 3.) Déterminer la masse m_{Fe} de fer ayant disparu lorsque tous les ions Fe^{3+} auront été réduits.

On veut faire réagir une solution contenant des ions de Fe²⁺ avec une solution contenant des ions permanganates MnO_4^- en milieu acide .

- 1.) La réaction est-elle possible ? Si oui écrire les demi-équations électroniques et le bilan global.
- 2.) On fait un dosage d'oxydoréduction des ions Fe^{2+} . On part d'un volume $v_1 = 200 \text{mL}$ d'une solution de sulfate de fer II (FeSO₄) de concentration $c_1 = 10^{-3} \text{ mol.L}^{-1}$. La solution de permanganate de potassium utilisée (KMnO₄) a une concentration $c_2 = 10^{-2} \text{ mol.L}^{-1}$. L'équivalence est obtenue dès que la teinte violette du permanganate persiste ce qui prouve qu'il n' y a plus d'ions Fe²⁺ pour faire la réaction : calculer le volume ajouté v2 .

Le symbole du cérium est Ce. On essaye de faire différentes réactions chimiques : **EXERCICE 4**:

- 1.) On donne pour Ce^{4+}/Ce^{3+} : $E^{0} = 1.41 \text{ V. Y a-t-il réaction chimique lorsqu'on met en présence}$:
 - 1.a.) des ions Ce^{4+} et des ions Fe^{3+} ? 1.b.) des ions Ce^{4+} et des ions Fe^{2+} ?
 - 1.c.) des ions Ce³⁺ et des ions Fe³⁺? 1.d.) des ions Ce^{3+} et des ions Fe^{2+} ?
 - Justifier les réponses en expliquant pour quelle raison la réaction se produit ou ne se produit pas.
- 2.) Ecrire le bilan global de la réaction qui se produit. Est-elle totale ?
- 3.) Pour doser une solution de fer II, on en prélève un volume v = 40 mL que l'on place dans un bécher avec un indicateur rédox et on ajoute progressivement une solution d'ions Cérium IV de concentration $c' = 0.1 \text{ mol.L}^{-1}$. On constate, grâce à l'indicateur, qu'on atteint l'équivalence lorqu'on a versé un volume v' = 10 mL d'ions Ce^{4+} .
 - 3.a.) En déduire la concentration c des ions Fe²⁺ dans la solution considérée.
 - 3.b.) Cette solution ayant été préparée en prenant un volume V = 100 mL d'eau et en y dissolvant du sulfate de fer II hydraté (FeSO₄, 7 H₂O), calculer la masse m de sulfate qu'on a du prendre.

On donne pour Sn^{4+}/Sn^{2+} : $E^o = 0.15 \text{ V}$. Soit une pile où les électrodes en graphite **EXERCICE 5**: sont considérées comme inattaquables. Les couples redox sont les suivants :

 $Cr_2O_7^{2-}$ (0,1 mol/L)/ Cr^{3+} (0,1 mol/L) en milieu acide Sn²⁺ (0,1 mol/L)/Sn⁴⁺ (0,1 mol/L) Volume : V = 0.1 LVolume : V = 0.1L

- 1.) Présicer le signe de chaque électrode et calculer la fém E de la pile.
- 2.) Quel est le rôle du pont électrochimique.
- 3.) Ecrire les demi-équations rédox qui se produiront au niveau de chaque électrode, lorsque la pile est en train de débiter un courant. Donner le bilan global de la réaction.
- 4.) La pile débite un courant d'intensité $I=15\ m\mbox{M}$ pendant une durée $t=20\ h$. Déterminer, en mol.L $^{-1}$, les concentrations $[Cr_2O_7^{2-}]$, $[Cr^{3+}]$, $[Sn^{2+}]$ et $[Sn^{4+}]$ des ions présents en fin de réaction.